Small Business Innovation Research/Small Business Tech Transfer

A Compact, Efficient Pyrolysis/Oxidation System for Solid Waste Resource Recovery in Space, Phase I

Completed Technology Project (2009 - 2009)

Project Introduction

Both pyrolysis and oxidation steps have been considered as the key solid waste processing step for a Controlled Ecological Life Support System (CELSS). Pyrolysis is more amenable to handling mixed solid waste streams in a microgravity environment, but produces a more complex product stream. Oxidation (incineration) produces a simpler product stream, but the oxidation of mixed solids is a complex unit operation in a microgravity environment. Pyrolysis is endothermic and requires no oxygen, while oxidation is exothermic and requires oxygen. A previous NASA SBIR Phase I and Phase II project has successfully integrated pyrolysis of the solid waste and oxidation of the fuel gases into a single, batch processing prototype unit. This Small Business Innovation Research Phase I project addresses the feasibility of integrating pyrolysis, tar cracking, and oxidation steps into a compact, efficient system for processing of spacecraft solid wastes. This integration will result in a reduction in energy consumption, an overall reduction in system complexity, and a lower Equivalent System Mass (ESM). The objective of the Phase I study is to demonstrate the feasibility of this integration process using bench scale experiments. This will be accomplished in three tasks: 1) design and construct integrated bench scale unit; 2) laboratory studies using simulated solid waste sample; 3) evaluation of laboratory results and preliminary design of Phase II prototype.

Primary U.S. Work Locations and Key Partners

A Compact, Efficient Pyrolysis/Oxidation System for Solid Waste Resource Recovery in Space, Phase I

Table of Contents

Project Introduction	1	
Primary U.S. Work Locations		
and Key Partners	1	
Organizational Responsibility	1	
Project Management		
Technology Areas	2	

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Ames Research Center (ARC)

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Small Business Innovation Research/Small Business Tech Transfer

A Compact, Efficient Pyrolysis/Oxidation System for Solid Waste Resource Recovery in Space, Phase I

Completed Technology Project (2009 - 2009)

Organizations Performing Work	Role	Туре	Location
Ames Research Center(ARC)	Lead	NASA	Moffett Field,
	Organization	Center	California
Advanced Fuel	Supporting	Industry	East Hartford,
Research, Inc.	Organization		Connecticut

Primary U.S. Work Locations		
California	Connecticut	

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Technology Areas

Primary:

- TX07 Exploration Destination Systems
 - ☐ TX07.2 Mission
 Infrastructure,
 Sustainability, and
 Supportability
 - ☐ TX07.2.1 Logistics Management

